The packing density in proteins: standard radii and volumes.

نویسندگان

  • J Tsai
  • R Taylor
  • C Chothia
  • M Gerstein
چکیده

The sizes of atomic groups are a fundamental aspect of protein structure. They are usually expressed in terms of standard sets of radii for atomic groups and of volumes for both these groups and whole residues. Atomic groups, which subsume a heavy-atom and its covalently attached hydrogen atoms into one moiety, are used because the positions of hydrogen atoms in protein structures are generally not known. We have calculated new values for the radii of atomic groups and for the volumes of atomic groups. These values should prove useful in the analysis of protein packing, protein recognition and ligand design. Our radii for atomic groups were derived from intermolecular distance calculations on a large number (approximately 30,000) of crystal structures of small organic compounds that contain the same atomic groups to those found in proteins. Our radii show significant differences to previously reported values. We also use this new radii set to determine the packing efficiency in different regions of the protein interior. This analysis shows that, if the surface water molecules are included in the calculations, the overall packing efficiency throughout the protein interior is high and fairly uniform. However, if the water structure is removed, the packing efficiency in peripheral regions of the protein interior is underestimated, by approximately 3.5 %.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly.

Traditionally, for biomolecular packing calculations research has focused on proteins. Besides proteins, RNA is the other large biomolecule that has tertiary structure interactions and complex packing. No one has yet quantitatively investigated RNA packing or compared its packing to that of proteins because, until recently, there were no large RNA structures. Here we address this question in de...

متن کامل

Calculation of Standard Atomic Volumes for RNA Cores and Comparison with Proteins: RNA is packed more tightly than Protein

YJMBI 56900—8/12/2004—15:52—SFORSTER 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 TE D PR OO F Traditionally, for biomolecular packing calculations research has focused on proteins. Besides proteins, RNA is the other large biomolecule that has tertiary structure interactions and complex packing. No one has yet quantitatively investigated RNA packing nor compared i...

متن کامل

Calculations of protein volumes: sensitivity analysis and parameter database

MOTIVATION The precise sizes of protein atoms in terms of occupied packing volume are of great importance. We have previously presented standard volumes for protein residues based on calculations with Voronoi-like polyhedra. To understand the applicability and limitations of our set, we investigated, in detail, the sensitivity of the volume calculations to a number of factors: (i) the van der W...

متن کامل

Wall Effect in 3D Simulation Of Same Sized Particles Packing

In this paper, the effects of container size on the porosity of random loose packing of mono size particles have been investigated using an Event Dynamics (ED) based model. Simultaneous effects of square container walls on particles packing and their order are also investigated. Our simulation results indicate higher container size will increase the total packing factor and high density regions...

متن کامل

Log-Normal and Mono-Sized Particles’ Packing into a Bounded Region

Many systems can be modeled with hard and various size spheres, therefore packing and geometrical structures of such sets are of great importance. In this paper, rigid spherical particles distributed in different sizes are randomly packed in confined spaces, using a parallel algorithm. Mersenne Twister algorithm was used to generate pseudorandom numbers for initial coordination of particles. Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 1999